Page 301 - Mechanism and Theory in Organic Chemistry
P. 301

Collins,  on the other  hand, has proposed  that  the  memory  effect can  be
             explained, at least for some systems, by "counter-ion control" : The leaving group
             stays near the site of ionization and thereby influences the future steric course of
             the reaction.56



             6.2  CARBONIUM IONS 57-60
             In this section we shall discuss carbocations in which at least one carbo~.tlumgh-
             a  three-center - bond  (see Section 5.3)  is  coordinated  to four~fivg~om~.
                                                                                   By
              ..7.p-.-..-
                                                              _C_-
             Olah's  terminoloxyY the5e-a~ cccarb~nium ions7'__as opposed  to  tricoordinated
             c c
              carbenium ions."61 By older terminology the more highly coordinated carboca-
             tions  are  called  "nonclassical  carbonium  ions"  to  differentiate  them  from the
             tricoordinated "classical  carbonium ions."
             Homoallylic Carbonium Ions62
             In 1946 Shoppee noted that the reaction of 3-P-cholesteryl chloride with acetate
             ion  proceeds  entirely  with  retention  of  configuration  (Equation 6.29).  Substi-
             tutions  on  the  analogous  saturated  compound  proceed  with  the  expected



             66  C. J. Collins, I. T. Glover,  M. D. Eckart, V. F.  Raaen, B.  M. Benjamin,  and B.  S. Benjaminov,
             J. Amer.  Chem. Soc., 94, 899 (1972).
             51  For a review on the general subject, see  P. D. Bartlett,  Nonclassical  Ions, W. A.  Benjamin,  Menlo
             Park,  Calif.,  1965.
             58  For reviews of  homoallylic  and  small-ring  participation,  see:  (a) R.  Breslow,  in  Molecular  Re-
              arrangements, P. Mayo, Ed., Wiley-Interscience,  New York,  1963, Vol.  1, p. 233; (b) M. Hanack and
             H.-J.  Schneider, Angew. Chem., Int. Ed., 6, 666 (1967); (c) R. R. Story and B.  C. Clark, in Carbonium
             Ions, G. A. Olah and P. v. R. Schleyer, Eds., Wiley-Interscience,  New York,  1972, Vol. 111, p.  1007;
              (d) K. B.  Wiberg, B.  A.  Hess, and A. J. Ashe, in Carbonium Ions,  Olah and Schleyer,  Eds.,  Vol. 111,
             p.  1295; (e) H.  G.  Rickey, in Carbonium Ions,  Olah and Schleyer,  Eds., Vol.  111, p.  1201.
             " For reviews of bicyclic carbonium ions, see:  (a) J. A. Berson in Molecular Rearrangements,  P.  Mayo,
             Ed., N.Y.,  Vol.  I, p.  111:  (b) G. D.  Sargent,  Quart. Rev.  (London), 20, p.  301  (1966); (c) G. D.
              Sargent, in Carbonium Ions, Olah and Schleyer,  Eds.,  Vol.  111, p.  1099.
             ao  For  an opposing  view, see  (a) note  25(a), p.  277;  (b) H.  C.  Brown,  Chm.  C3  Eng.  News,  45,
              Feb.  13, p. 87 (1967); (c) H.  C. Brown, Accts. Chem. Res., 6, 377 (1973); (d) E. N.  Peters and H. C.
             Brown, J. Amer.  Chem. Soc., 96, 263, 265  (1974); (e) H.  C. Brown,  M. Ravindranathan,  and E.  N.
              Peters, J. Amer.  Chem. Soc., 96,  7351  (1974).
               G. A.  Olah, J. Amer.  Chem. Soc.,  94, 808 (1972).
             a2 See note 58.
   296   297   298   299   300   301   302   303   304   305   306