Page 322 - Book Hosokawa Nanoparticle Technology Handbook
P. 322

5.4 NANOPORE CHARACTERIZATION                                                FUNDAMENTALS

                     140                                         [17] K. Nogi, Y. Okada and K. Ogino: Mat. Trans., JIM, 35
                                               C (√31×√31) R ± 9°    (3), 156–160 (1994).
                     130                       A                 [18] B.B. Pate: Surf. Sci., 165, 83–142 (1986).
                                               R C (1×1)         [19] K. Nogi: Materia, 35 (5), 523–525 (1996).
                    Contact angle (°) 120                        [20] P. Shen, H. Fujii and K. Nogi:  Scripta Mater.,  52,
                                                                     1259–1263 (2005).
                     110
                                                                 [21] P. Shen, H. Fujii and K. Nogi: J. Mater. Res., 20(4),
                     100
                                                                     Apr (2005).
                     90                                          [22] P. Shen, H. Fujii, T. Matsumoto and K. Nogi, J. Am.
                                                                     Ceram. Soc., 88 (4), 912–917 (2005).
                     80                                          [23] B.B. Pate, P.M. Tefan, C. Binns, P.J. Jupiter, M.L.
                                                                     Sheck, I. Lindau and W.E. Spicer: J. Vac. Sci. Technol.,
                     70
                       700  800  900  1000  1100  1200  1300  1400  1500  1600  A, 19, 349–354 (1981).
                                     Temperature (°C)            [24] V. Hamza, G.D. Kubiak and R.H. Stulen: Surf. Sci.,
                                                                     206, L833–L844 (1988).
                  Figure 5.3.30                                  [25] S.V. Pepper: J. Vac. Sci. Technol., 20, 643–649, (1982).
                  Temperature dependence of liquid Al on single crystal of  [26] J.E. McDonald and J.G. Eberhart:  Transition. Met.
                  alumina.                                           Soc. AIME, 40, 1045 (1965).
                                                                 [27] K, Nogi, K. Ikeda and K. Ogino: Mater. Trans. JIM,
                                                                     54 (12), 1401–1407 (1990).
                                   References
                                                                 5.4 Nanopore characterization
                   [1] R.N. Wenzel: J. Phys. Colloid Chem., 53, 1466–1470
                      (1949).
                   [2] P. Shen, H. Fujii and K. Nogi: Mater. Trans., 45 (9),  A macroscopic body composed of nanoparticles nat-
                      2857–2863 (2004).                          urally possesses microscopic void space. Some kind
                                                                 of nanoparticles may possess nanopores within
                   [3] P. Shen, H. Fujii and K. Nogi:  J. Mater. Process.
                                                                 themselves. Such pore spaces can bring functional
                      Technol., 155–156, 1256–1260 (2004).
                                                                 characteristics such as adsorptive capacity, selective
                   [4] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: J. Am.
                                                                 permeation, dielectric properties, while they would
                      Ceram. Soc., 87 (11), 2151–2159 (2004).
                                                                 stand as a deficit as in the case for ceramic bodies.
                   [5] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: Ceramic  With increasing demand in functionality, recent
                      Transactions, 146, (2004).                 powder-based manufacturing tends to use finer par-
                   [6] P. Shen, H. Fujii and K. Nogi: Adv. Mater. Process.  ticles of submicron down to nanometer range. As a
                      Technol., 1416–1419 (2003).                result the characterization of capillarity in the
                   [7] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: Metall.  nanometer range is getting more and more impor-
                      Mater. Trans. A, 35A, 583–588 (2004).      tant. Since the size of the void space is several to ten
                                                                 times smaller than the particle diameter, the charac-
                   [8] P. Shen, H. Fujii, T. Matsumoto and K. Nogi:  Acta
                                                                 terization method for single-nanometers up to tens
                      Mater., 52, 887–898 (2004).
                                                                 of nanometers should be applied for nanoparticle-
                   [9] P. Shen, H. Fujii, T. Matsumoto and K. Nogi:
                                                                 based porous bodies.
                      Transaction of JWRI, 32 (2), 313–318 (2003).
                                                                  In general the nitrogen adsorption method is
                  [10] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: Scripta  applied for this range of pores. A nitrogen adsorption
                      Mater., 49, 563–569 (2003).                isotherm at 77 K, or the relation between adsorbed
                  [11] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: Acta.  amount of nitrogen per unit mass of the solid and the
                      Mater., 51, 4897–4906 (2003).              relative pressure, which equals to (equilibrium pres-
                  [12] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: Scripta  sure p)/(saturated vapor pressure p ), is measured and
                                                                                            s
                      Mater., 49, 563–569 (2003).                analyzed with various methods described in this chap-
                                                                 ter to determine the distribution of pore volume
                  [13] P. Shen, H. Fujii, T. Matsumoto and K. Nogi: Scripta
                                                                 against pore size. Measurement is done either by the
                      Mater., 48, 779–784 (2003).
                                                                 volumetric method which detects pressure variation
                  [14] P. Shen, H. Fujii, T. Matsumoto and K. Nogi:
                                                                 of nitrogen gas introduced in an adsorption system
                      Transitions JWRI, 32 (1), 155–158 (2003).
                                                                 with constant volume, or the gravimetric method
                  [15] K. Nogi, M. Tsujimoto, K. Ogino and N. Iwamoto:  which measures weight variation of a sample contact-
                      Acta Metall., 40, 1045–1050 (1992).        ing with the gas of given relative pressure. The great
                  [16] K. Nogi, M. Nishikawa, H. Fujii and S. Hara: Acta  majority of commercially available automated appa-
                      Mater., 46 (7), 2305–2311 (1998).          ratuses are based on the former principle.
                                                                                                        297
   317   318   319   320   321   322   323   324   325   326   327