Page 194 - Numerical Analysis Using MATLAB and Excel
P. 194

Computation of the State Transition Matrix


               3. We obtain the   coefficients from
                                 a
                                  i
                                                         2             n –  1  λ t
                                                                               1
                                            a +  a λ +  a λ +  … + a n –  1 λ 1  =  e
                                                         1
                                                       2
                                                   1
                                                 1
                                             0
                                                         2
                                                                               2
                                            a +  a λ +  a λ +  … + a n –  1 λ n –  1  =  e λ t
                                                 1
                                             0
                                                                       2
                                                         2
                                                   2
                                                       2
                                                             …
                                                         2
                                                                     λ
                                                                               n
                                            a +  a λ + a λ +  … +  a n –  1 n n –  1  =  e λ t
                                             0
                                                       2 n
                                                 1 n
                   We use as many equations as the number of the eigenvalues, and we solve for the coefficients
                   a i .
               4. We substitute the   coefficients into the state transition matrix of (5.141), and we simplify.
                                    a
                                     i
               Example 5.17
               Compute the state transition matrix e At  given that
                                                        5    7 – 5
                                                  A =   0    4 – 1                                    (5.142)
                                                        2    8 – 3
               Solution:

               1. We first compute the eigenvalues from det A λI–[  ]  =  0 . We obtain  A λI–[  ]   at once, by sub-
                   tracting   from each of the main diagonal elements of  . Then,
                           λ
                                                                        A
                                                       5 –  λ   7      – 5
                                               ]
                                        [
                                     det A λI =    det   0     4 λ     – 1   =  0                     (5.143)
                                           –
                                                                –
                                                         2      8    –  3 – λ
               and expansion of this determinant yields the polynomial

                                                       2
                                                 3
                                                λ – 6λ +  11λ – 6 =  0                                (5.144)
               We will use MATLAB roots(p) function to obtain the roots of (5.144).
               p=[1  −6  11  −6]; r=roots(p); fprintf(' \n'); fprintf('lambda1 = %5.2f \t', r(1));...


               fprintf('lambda2 = %5.2f \t', r(2)); fprintf('lambda3 = %5.2f', r(3))
               lambda1 = 3.00   lambda2 = 2.00   lambda3 = 1.00
               and thus the eigenvalues are




               Numerical Analysis Using MATLAB® and Excel®, Third Edition                              5−33

               Copyright © Orchard Publications
   189   190   191   192   193   194   195   196   197   198   199