Page 196 - Numerical Analysis Using MATLAB and Excel
P. 196

Computation of the State Transition Matrix



                   eAt =
                      [-2*exp(t)+2*exp(2*t)+exp(3*t),-6*exp(t)+5*exp(2*t)+exp(3*t),
                      4*exp(t)-3*exp(2*t)-exp(3*t)]
                      [-exp(t)+2*exp(2*t)-exp(3*t),-3*exp(t)+5*exp(2*t)-exp(3*t),
                      2*exp(t)-3*exp(2*t)+exp(3*t)]
                      [-3*exp(t)+4*exp(2*t)-exp(3*t),-9*exp(t)+10*exp(2*t)-exp(3*t),
                      6*exp(t)-6*exp(2*t)+exp(3*t)]
                   Thus,

                                                                                    2t
                                                2t
                                                              t
                                           t
                                                                   2t
                                                                               t
                                       –  2e + 2e + e 3t  – 6e +  5e +  e 3t  4e –  3e – e 3t
                                 At
                                e   =   –  e +  2e –  e 3t  –  3e +  5e –  e 3t  2e –  3e +  e 3t
                                          t
                                                                 2t
                                                                               t
                                               2t
                                                            t
                                                                                    2t
                                                2t
                                           t
                                                                   2t
                                                                                    2t
                                                             t
                                                                               t
                                       – 3e +  4e –  e 3t  –  9e +  10e –  e 3t  6e –  6e +  e 3t
               Case II:  Multiple Eigenvalues
               In this case, we will assume that the polynomial of
                                                             ]
                                                      [
                                                   det A λI =    0                                    (5.149)
                                                         –
               has   roots, and   of these roots are equal. In other words, the roots are
                                m
                   n
                                           λ =  λ =  λ …  3  λ =  m ,  λ m +  1  ,  λ n               (5.150)
                                            1
                                                 2
               The coefficients   of the state transition matrix
                               a
                                 i
                                                             2
                                        e At  =  a I +  a A +  a A +  … +  a n – 1 A n – 1            (5.151)
                                               0
                                                          2
                                                    1
               are found from the simultaneous solution of the system of equations of (5.152) below.
               Example 5.18
                                                    At
               Compute the state transition matrix e   given that
                                                        A =   – 1 0
                                                               2 – 1
               Solution:
               1. We first find the eigenvalues   of the matrix   and these are found from the polynomial of
                                                λ
                                                                A
                             ]
                      [
                   det A λI =    0 . For this example,
                         –


               Numerical Analysis Using MATLAB® and Excel®, Third Edition                              5−35

               Copyright © Orchard Publications
   191   192   193   194   195   196   197   198   199   200   201