Page 307 - Numerical Analysis Using MATLAB and Excel
P. 307

Interpolation with MATLAB



                %
                spline_int=interp1(x,y,[pi/8 pi/4 3*pi/5 3*pi/7]','spline');
                %
                y=zeros(4,4);% Construct a 4 x 4 matrix of zeros
                y(:,1)=analytic;                % 1st column of matrix
                y(:,2)=linear_int;              % 2nd column of matrix
                y(:,3)=cubic_int;               % 3rd column of matrix
                y(:,4)=spline_int;              % 4th column of matrix
                fprintf(' \n');                 % Insert line
                fprintf('Analytic \t Linear Int \t Cubic Int \t Spline Int \n')
                fprintf(' \n');
                fprintf('%8.5f\t %8.5f\t %8.5f\t %8.5f\n',y')
                fprintf(' \n');
                %
                % The statements below compute the percent error for the three
                % interpolation methods as compared with the exact (analytic) values
                %
                error1=(linear_int−analytic).*100 ./ analytic;
                error2=(cubic_int−analytic).*100 ./ analytic;
                error3=(spline_int−analytic).*100 ./ analytic;
                %
                z=zeros(4,3);                   % Construct a 4 x 3 matrix of zeros
                z(:,1)=error1;                  % 1st column of matrix
                z(:,2)=error2;                  % 2nd column of matrix
                z(:,3)=error3;                  % 3rd column of matrix
                % fprintf(' \n');               % Insert line
                disp('The percent errors for each interpolation method are:')
                fprintf(' \n');
                fprintf('Linear Int \t Cubic Int \t Spline Int \n')
                fprintf(' \n');
                fprintf('%8.5f\t %8.5f\t %8.5f\n',z')
                fprintf(' \n');
                The plot for the function of this example is shown in Figure 7.7.





















               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             7−29
               Copyright © Orchard Publications
   302   303   304   305   306   307   308   309   310   311   312