Page 157 - Power Electronic Control in Electrical Systems
P. 157

//SYS21/F:/PEC/REVISES_10-11-01/075065126-CH004.3D ± 145 ± [106±152/47] 17.11.2001 9:54AM







                                                            Power electronic control in electrical systems 145

                      supplied to the shunt converter, Re V vR   I   vR  satisfies the active power demanded

                      by the series converter, Re V cR   I m    . The impedance of the series and shunt trans-
                      formers, Z cR and Z vR , are included explicitly in the model. The ideal voltage sources
                      and the constraint power equation given in equations (4.9)±(4.11) are used to derive
                      this UPFC model.
                        Based on the equivalent circuit shown in Figure 4.6(b), the following transfer
                      admittance equation can be written
                                                                           2    3
                                                                             V l

                                    I l    (Y cR ‡ Y vR )  Y cR   Y cR   Y vR  6  V m  7
                                        ˆ                                  6    7        (4:86)
                                    I m        Y cR     Y cR   Y cR    0   4  V cR  5
                                                                             V vR
                      The injected active and reactive powers at nodes l and m may be derived using the
                      complex power equation
                      "   #   "       #"   #
                                    0    I
                        S l     V l
                                          l
                            ˆ

                        S m     0   V m  I m
                                                                         2    3
                                                                           V l
                              "       #"                                 #6     7
                                V l  0   (Y cR  ‡ Y )   Y cR   Y cR   Y  6  V 7
                                                 vR
                            ˆ                                         vR 6  m 7          (4:87)
                                0   V m      Y cR     Y cR   Y cR   0    6  V cR 5
                                                                              7
                                                                         6



                                                                              7
                                                                         4
                                                                          V vR

                                                                                        V
                                                                                      2    3
                                                                                          l
                              "       #"                                             #6      7
                                V l  0    G ll   jB ll  G lm   jB lm  G lm   jB lm  G l0   jB l0  6  V 7
                            ˆ                                                         6   m 7
                                                                                      6
                                                                                           7
                                0   V m  G ml   jB ml  G mm   jB mm  G mm   jB mm  0  6 V    7
                                                                                      4  cR 5
                                                                                        V vR

                      After some straightforward but arduous algebra, the following active and reactive
                      power equations are obtained
                                        2
                                 P l ˆ V l G ll ‡ V l V m jfG lm cos (y l   y m ) ‡ B lm sin (y l   y m )
                                              jjj
                                     jj
                                                                                         (4:88)
                                     jjj
                                   ‡ V l V cR j G lm cos (y l   y cR ) ‡ B lm sin (y l   y cR )g
                                            f
                                            f
                                   ‡ V l V vR j G l0 cos (y l   y vR ) ‡ B l0 sin (y l   y vR )g
                                     jjj
                                      2
                                            jjj
                             Q l ˆ jV l j B ll ‡ V l V m j G lm sin (y l   y m )   B lm cos (y l   y m )g
                                                  f
                                                                                         (4:89)
                                 jjj
                                         f
                               ‡ V l V cR j G lm sin (y l   y cR )   B lm cos (y l   y cR )g
                                 jjj
                               ‡ V l V vR j G l0 sin (y l   y vR )   B l0 cos (y l   y vR )g
                                         f
                                     2
                                  j
                            P m ˆ V m j G mm ‡ V m j V l G ml cos (y m   y l ) ‡ B ml sin (y m   y l )g
                                            j
                                                jjf
                                                                                         (4:90)
                                         f
                                 j
                                     j
                               ‡ V m j V cR j G mm cos (y m   y cR ) ‡ B mm sin (y m   y cR )g
                                      2
                                             j
                                                    f
                            Q m ˆ jV m j B mm ‡ V m kV l j G ml sin (y m   y l )   B ml cos (y m   y l )g
                                                                                         (4:91)
                                         f
                                 j
                               ‡ V m kV cR j G mm sin (y m   y cR )   B mm cos (y m   y cR )g
   152   153   154   155   156   157   158   159   160   161   162