Page 278 - Rashid, Power Electronics Handbook
P. 278
14 Inverters 267
instance, V ¼ 0:5 þ j0:866 is due to the line voltages 11. A. Jungreis and A. Kelly, ‘‘Adjustable speed drive for residential
2
v ab ¼ 0:5, v ¼ 0:5, v ¼ÿ1:0 in pu. Thus, although the applications,'' IEEE Trans. Industry Applications 31(6), 1315–1322
bc
ca
principle of operation is the same, the space vector digital (1995).
3
algorithm will have to deal with a higher number of states N . 12. K. Rajashekara, ‘‘History of electrical vehicles in General Motors,''
IEEE Trans. Industry Applicatioins 30(4), 897–904 (1994).
Moreover, because some space vectors (e.g., V 13 and V 14 in 13. B. Bose, ‘‘Power electronics and motion control Ð Technology status
Fig. 14.60) produce the same load-voltage terminals, the
and recent trends,'' IEEE Trans. Industry Applications, 29(5), 902–909
algorithm will have to decide between the two based on
(1993).
additional criteria and that of the basic space vector approach. 14. S. Bhowmik and R. Spe Âe, ‘‘A guide to the application-oriented
Clearly, as the number of level increases, the algorithm selection of ac=ac converter topologies,'' IEEE Trans. Power Electro-
becomes more and more elaborate. However, the bene®ts are nics, 8(2), 156–163 (1993).
not evident as the number of level increases. Five levels is the 15. B. Wu, S. Dewan, and G. Slemon, ‘‘PWM Ð CSI inverter for induc-
maximum number used in practical applications. This is based tion motor drives,'' IEEE Trans. Industry Applications 28(1), 64–71
on a compromise between the complexity of the implementa- (1992).
tion and the bene®ts of the resulting waveforms.
Current Source Inverters
14.8 Acknowledgments 16. F. Antunes, H. Braga, and I. Barbi, ‘‘Application of a generalized
current multilevel cell to current-source inverters,'' IEEE Trans.
The author is grateful for the ®nancial support from the Industrial Electronics, 46(1), 31–38 (1999).
Chilean Fund for Scienti®c and Technological Development 17. M. Pande, H. Jin, and G. Joo Âs, ‘‘Modulated integral control technique
(FONDECYT) through projects 199 0401 and 799 0071, and for compensating switch delays and nonideal dc buses in voltage-
from Concepcio Ân University through project P.I. No. source inverters,'' IEEE Trans. Industrial Electronics 44(2), 182–190
98.092.040-1.In. (1997).
18. J. Espinoza and G. Joo Âs, ‘‘Current-source converter on-line pattern
generator switching frequency minimization,'' IEEE Trans. Industry
Applications 44(2), 198–206, (1997).
References 19. M. Chandorkar, D. Divan, and R. Lasseter, ‘‘Control techniques for
Inverters Applications multiple current source GTO converters,'' IEEE Trans. Industry
Applications 31(1), 134–140 (1995).
1. G. Joo Âs and J. Espinoza, ‘‘Three phase series var compensation based 20. S. Nonaka and Y. Neba, ‘‘Current regulated PWM-CSI induction
on a voltage controlled current source inverter with supplemental motor drive system without a speed sensor,'' IEEE Trans. Industry
modulation index control,'' IEEE Trans. Power Electronics 14(3), 587– Applications 30(1), 116–125 (1994).
598 (1999). 21. G. Joo Âs, G. Moschopoulos, and P. Ziogas, ‘‘A high performance
2. P. Jain, J. Espinoza, and H. Jin, ‘‘Performance of a single-stage UPS current source inverter,'' IEEE Trans. Power Electronics 8:4, 571–579
system for single-phase trapezoidal-shaped ac voltage supplies,'' IEEE (1993).
Trans. Power Electronics 13(5), 912–923 (1998). 22. C. Hsu and W. Lee, ‘‘Superconducting magnetic energy storage for
3. F. Kamran and T. Habetler, ‘‘A novel on-line UPS with universal power system applications,'' IEEE Trans. Industry Applications 29P:5,
®ltering capabilities,'' IEEE Trans. Power Electronics 13(3), 410–418 990–996 (1992).
(1998).
4. H. Akagi, ‘‘The state-of-the-art of power electronics in Japan,'' IEEE
Trans. Power Electronics 13(2), 345–356 (1998). Modulating Techniques and Control Strategies
5. T. Wu and T. Yu, ‘‘Off-line applications with single-stage converters,''
IEEE Trans. Industry Applications 44(5), 638–647 (1997). 23. J. Espinoza and G. Joo Âs, ‘‘DSP implementation of output voltage
6. H. Akagi, ‘‘New trends in active ®lters for power conditioning,'' IEEE reconstruction in CSI based converters,'' IEEE Trans. Industrial
Trans. Industry Applications 32(6), 1312–1322 (1996). Electronics 45(6), 895–904 (1998).
7. F. Peng, J. Lai, J. McKeever, and J. van Coevering, ‘‘A multilevel 24. M. Kazmierkowski and L. Malesani, ‘‘Current control techniques for
voltage-source inverter with separate dc sources for static var genera- three-phase voltage-source PWM converters: A survey,'' IEEE Trans.
tion,'' IEEE Trans. Industry Applications 32(5), 1130–1138 (1996). Industrial Electronics 45(5), 691–703 (1998).
8. L. Tolbert, F. Peng, and T. Habetler, ‘‘Multilevel converters for large 25. A. Tilli and A. Tonielli, ‘‘Sequential design of hysteresis current
electric drives,'' IEEE Trans. Industry Applicatioins 35(1), 36–44 controller for three-phase inverter,'' IEEE Trans. Industrial Electronics,
(1999). 45(5), 771–781 (1998).
9. J. Espinoza and G. Joo Âs, ‘‘A current source inverter induction motor 26. D. Chung, J. Kim, and S. Sul, ‘‘Uni®ed voltage modulation technique
drive system with reduced losses,'' IEEE Trans. Industry Applications for real-time three-phase power conversion,'' IEEE Trans. Industry
34(4), 796–805 (1998). Applications 34(2), 374–380 (1998).
10. M. Ryan, W. Brumsickle, and R. Lorenz, ‘‘Control topology options 27. K. Rahman, M. Khan, M. Choudhury, and M. Rahman, ‘‘Variable-
for single-phase UPS inverters,'' IEEE Trans Industry Applications band hysteresis current controllers for PWM voltage-source inver-
33(2), 493–501 (1997). ters,'' IEEE Trans. Power Electronics, 12(6), 964–970 (1997).