Page 278 - Rashid, Power Electronics Handbook
P. 278

14  Inverters                                                                                       267

                 instance, V ¼ 0:5 þ j0:866 is due to the line voltages  11. A. Jungreis and A. Kelly, ‘‘Adjustable speed drive for residential
                           2
                 v ab  ¼ 0:5, v ¼ 0:5, v ¼ÿ1:0 in pu. Thus, although the  applications,'' IEEE Trans. Industry Applications 31(6), 1315–1322
                           bc
                                    ca
                 principle of operation is the same, the space vector digital  (1995).
                                                                  3
                 algorithm will have to deal with a higher number of states N .  12. K. Rajashekara, ‘‘History of electrical vehicles in General Motors,''
                                                                         IEEE Trans. Industry Applicatioins 30(4), 897–904 (1994).
                 Moreover, because some space vectors (e.g., V 13  and V 14  in  13. B. Bose, ‘‘Power electronics and motion control Ð Technology status
                 Fig. 14.60) produce the same load-voltage terminals, the
                                                                         and recent trends,'' IEEE Trans. Industry Applications, 29(5), 902–909
                 algorithm will have to decide between the two based on
                                                                         (1993).
                 additional criteria and that of the basic space vector approach.  14. S. Bhowmik and R. Spe Âe, ‘‘A guide to the application-oriented
                 Clearly, as the number of level increases, the algorithm  selection of ac=ac converter topologies,'' IEEE Trans. Power Electro-
                 becomes more and more elaborate. However, the bene®ts are  nics, 8(2), 156–163 (1993).
                 not evident as the number of level increases. Five levels is the  15. B. Wu, S. Dewan, and G. Slemon, ‘‘PWM Ð CSI inverter for induc-
                 maximum number used in practical applications. This is based  tion motor drives,'' IEEE Trans. Industry Applications 28(1), 64–71
                 on a compromise between the complexity of the implementa-  (1992).
                 tion and the bene®ts of the resulting waveforms.
                                                                      Current Source Inverters

                 14.8 Acknowledgments                                 16. F. Antunes, H. Braga, and I. Barbi, ‘‘Application of a generalized
                                                                         current multilevel cell to current-source inverters,'' IEEE Trans.
                 The author is grateful for the ®nancial support from the  Industrial Electronics, 46(1), 31–38 (1999).
                 Chilean Fund for Scienti®c and Technological Development  17. M. Pande, H. Jin, and G. Joo Âs, ‘‘Modulated integral control technique
                 (FONDECYT) through projects 199 0401 and 799 0071, and  for compensating switch delays and nonideal dc buses in voltage-
                 from Concepcio Ân University through project P.I. No.   source inverters,'' IEEE Trans. Industrial Electronics 44(2), 182–190
                 98.092.040-1.In.                                        (1997).
                                                                      18. J. Espinoza and G. Joo Âs, ‘‘Current-source converter on-line pattern
                                                                         generator switching frequency minimization,'' IEEE Trans. Industry
                                                                         Applications 44(2), 198–206, (1997).
                 References                                           19. M. Chandorkar, D. Divan, and R. Lasseter, ‘‘Control techniques for
                 Inverters Applications                                  multiple current source GTO converters,'' IEEE Trans. Industry
                                                                         Applications 31(1), 134–140 (1995).
                  1. G. Joo Âs and J. Espinoza, ‘‘Three phase series var compensation based  20. S. Nonaka and Y. Neba, ‘‘Current regulated PWM-CSI induction
                    on a voltage controlled current source inverter with supplemental  motor drive system without a speed sensor,'' IEEE Trans. Industry
                    modulation index control,'' IEEE Trans. Power Electronics 14(3), 587–  Applications 30(1), 116–125 (1994).
                    598 (1999).                                       21. G. Joo Âs, G. Moschopoulos, and P. Ziogas, ‘‘A high performance
                  2. P. Jain, J. Espinoza, and H. Jin, ‘‘Performance of a single-stage UPS  current source inverter,'' IEEE Trans. Power Electronics 8:4, 571–579
                    system for single-phase trapezoidal-shaped ac voltage supplies,'' IEEE  (1993).
                    Trans. Power Electronics 13(5), 912–923 (1998).   22. C. Hsu and W. Lee, ‘‘Superconducting magnetic energy storage for
                  3. F. Kamran and T. Habetler, ‘‘A novel on-line UPS with universal  power system applications,'' IEEE Trans. Industry Applications 29P:5,
                    ®ltering capabilities,'' IEEE Trans. Power Electronics 13(3), 410–418  990–996 (1992).
                    (1998).
                  4. H. Akagi, ‘‘The state-of-the-art of power electronics in Japan,'' IEEE
                    Trans. Power Electronics 13(2), 345–356 (1998).   Modulating Techniques and Control Strategies
                  5. T. Wu and T. Yu, ‘‘Off-line applications with single-stage converters,''
                    IEEE Trans. Industry Applications 44(5), 638–647 (1997).  23. J. Espinoza and G. Joo Âs, ‘‘DSP implementation of output voltage
                  6. H. Akagi, ‘‘New trends in active ®lters for power conditioning,'' IEEE  reconstruction in CSI based converters,'' IEEE Trans. Industrial
                    Trans. Industry Applications 32(6), 1312–1322 (1996).  Electronics 45(6), 895–904 (1998).
                  7. F. Peng, J. Lai, J. McKeever, and J. van Coevering, ‘‘A multilevel  24. M. Kazmierkowski and L. Malesani, ‘‘Current control techniques for
                    voltage-source inverter with separate dc sources for static var genera-  three-phase voltage-source PWM converters: A survey,'' IEEE Trans.
                    tion,'' IEEE Trans. Industry Applications 32(5), 1130–1138 (1996).  Industrial Electronics 45(5), 691–703 (1998).
                  8. L. Tolbert, F. Peng, and T. Habetler, ‘‘Multilevel converters for large  25. A. Tilli and A. Tonielli, ‘‘Sequential design of hysteresis current
                    electric drives,'' IEEE Trans. Industry Applicatioins 35(1), 36–44  controller for three-phase inverter,'' IEEE Trans. Industrial Electronics,
                    (1999).                                              45(5), 771–781 (1998).
                  9. J. Espinoza and G. Joo Âs, ‘‘A current source inverter induction motor  26. D. Chung, J. Kim, and S. Sul, ‘‘Uni®ed voltage modulation technique
                    drive system with reduced losses,'' IEEE Trans. Industry Applications  for real-time three-phase power conversion,'' IEEE Trans. Industry
                    34(4), 796–805 (1998).                               Applications 34(2), 374–380 (1998).
                 10. M. Ryan, W. Brumsickle, and R. Lorenz, ‘‘Control topology options  27. K. Rahman, M. Khan, M. Choudhury, and M. Rahman, ‘‘Variable-
                    for single-phase UPS inverters,'' IEEE Trans Industry Applications  band hysteresis current controllers for PWM voltage-source inver-
                    33(2), 493–501 (1997).                               ters,'' IEEE Trans. Power Electronics, 12(6), 964–970 (1997).
   273   274   275   276   277   278   279   280   281   282   283