Page 279 - Rashid, Power Electronics Handbook
P. 279
268 J. Espinoza
28. L. Malesani, P. Mattavelli, and P. Tomasin, ‘‘Improved constant- 44. L. Li, D. Czarkowski, Y. Liu, and P. Pillay, ‘‘Multilevel selective
frequency hysteresis current control of VSI inverters with simple harmonic elimination PWM technique in series-connected voltage
feed-forward bandwidth prediction,'' IEEE Trans. Industry Applica- inverters,'' IEEE Trans. Industry Applications 36(1), 160–170 (2000).
tions 33(5), 1194–1202 (1997). 45. J. Espinoza, G. Joo Âs, J. Guzma Ân, L. Mora Ân, and R. Burgos, ‘‘Selective
29. M. Rahman, T. Radwin, A. Osheiba, and A. Lashine, ‘‘Analysis of harmonic elimination and current=voltage control in current=voltage
current controllers for voltage-source inverter,'' IEEE Trans. Industrial source topologies: A uni®ed approach,'' Conf. Rec. IECON'99, San
Electronics 44(4), 477–485 (1997). Jose  CA, USA, pp. 318–323, Nov. 29–Dec. 3, 1999.
30. V. Blasko, ‘‘Analysis of a hybrid PWM based on modi®ed space-vector 46. J. Sun, S. Beineke, and H. Grotstollen, ‘‘Optimal PWM based on real-
and triangle-comparison methods,'' IEEE Trans. Industry Applications time solution of harmonic elimination equations,'' IEEE Trans. Power
33(3), 756–764 (1997). Electronics 11(4), 612–621 (1996).
31. Y. Lee, B. Suh, and D. Hyun, ‘‘A novel PWM scheme for a three-level 47. H. Karshenas, H. Kojori, and S. Dewan, ‘‘Generalized techniques of
voltage source inverter with GTO thyristor,'' IEEE Trans. Industry selective harmonic elimination and current control in current source
Applications 32(2), 260–268 (1997). inverters=converters,'' IEEE Trans. Power Electronics 10(5), 566–573
32. A. Trzynadlowski, R. Kirlin, and S. Legowski, ‘‘Space vector PWM (1995).
technique with minimum switching losses and a variable pulse rate,'' 48. H. Patel and R. Hoft, ‘‘Generalized techniques of harmonic elimina-
IEEE Trans. Industrial Electronics 44(2), 173–181 (1997). tion and voltage control in thyristor inverters, Part I-Harmonic
33. S. Tadakuma, S. Tanaka, H. Naitoh, and K. Shimane, ‘‘Improvement elimination,'' IEEE Trans. Industry Applications IA-9(3), 310–317
of robustness of vector-controlled induction motors using feedfor- (1973).
ward and feedback control,'' IEEE Trans. Power Electronics 12(2),
221–227 (1997).
34. J. Holtz and B. Beyer, ‘‘Fast current trajectory tracking control based
on synchronous optimal pulse width modulation,'' IEEE Trans. Effects of PWM-Type of Voltage Waveforms
Industry Applications 31(5), 1110–1120 (1995).
35. A. Trzynadlowski and S. Legowski, ‘‘Minimum-loss vector PWM 49. N. Aoki, K. Satoh, and A. Nabae, ‘‘Damping circuit to suppress motor
strategy for three-phase inverters,'' IEEE Trans. Power Electronics terminal overvoltage and ringing in PWM inveter-fed ac motor drive
9(1) 26–34 (1994). systems with long motor leads,'' IEEE Trans. Industry Applications
36. J. Espinoza, G. Joo Âs, and P. Ziogas, ‘‘Voltage controlled current source 35(5), 1014–1020 (1999).
inverters,'' Conf. Rec. IECON'92, San Diego CA, USA, pp. 512–517, 50. D. Rendusara and P. Enjeti, ‘‘An improved inverter output ®lter
November 1992. con®guration reduces common and differential modes dv=dt at the
motor terminals in PWM drive systems,'' IEEE Trans. Power Electro-
nics 13(6), 1135–1143 (1998).
51. S. Chen and T. Lipo, ‘‘Bearing currents and shaft voltages of an
Overmodulation induction motor under hard- and soft-switching inverter excitation,''
IEEE Trans. Industry Applicatioins 34(5), 1042–1048 (1998).
37. A. Hava, S. Sul, R. Kerkman, and T. Lipo, ‘‘Dynamic overmodulation 52. A. von Jouanne, H. Zhang, and A. Wallace, ‘‘An evaluation of
characteristics of triangle intersection PWM methods,'' IEEE Trans.
mitigation techniques for bearing currents, EMI and overvoltages
Industry Applications 35(4), 896–907 (1999).
in ASD applications,'' IEEE Trans. Industry Applications 34(5), 1113–
38. D. Choon and G. Lee, ‘‘A novel overmodulation technique for space-
1122 (1998).
vector PWM inverters,'' IEEE Trans. Power Electronics 13(6), 1144–
1151 (1998).
39. A. Hava, R. Kerkman, and T. Lipo, ‘‘Carrier-based PWM-VSI over-
modulation strategies: Analysis, comparison, and design,'' IEEE
Trans. Power Electronics 13(4), 674–689 (1998). Multilevel Structures
40. V. Kaura, ‘‘A new method to linearize any triangle-comparison-based
53. L. Tolbert and T. Habetler, ‘‘Novel multilevel inverter carrier-based
PWM by reshaping the modulation command,'' IEEE Trans. Industry
PWM method,'' in IEEE Trans. Industry Applications, 35(5), 1098–
Applications 33(5), 1254–1259 (1997).
1107 (1999).
41. S. Bolognani and M. Zigliotto, ‘‘Novel digital continuous control of
54. G. Walker and G. Ledwich, ‘‘Bandwidth considerations for multilevel
SVM inverters in the overmodulation range,'' IEEE Trans. Industry
converters,'' IEEE Trans. Power Electronics 14(1), 74–81 (1999).
Applications 33(2), 525–530 (1997).
55. Y. Liang and C. Nwankpa, ‘‘A new type of STATCOM based on
42. J. Holtz, W. Lotskat, and A. Khambadkone, ‘‘On continuous control
cascading voltage-source inverters with phase-shifted unipolar
of PWM inverters in the overmodulation range including the six-step
SPWM,'' IEEE Trans. Industry Applications 35(5), 1118–1123 (1999).
mode,'' IEEE Trans. Power Electronics 8(4), 546–553 (1993).
56. N. Schibli, T. Nguyen, and A. Rufer, ‘‘A three-phase multilevel
converter for high-power induction motors,'' IEEE Trans. Power
Electronics 13(5), 978–986 (1998).
Selective Harmonic Elimination 57. J. Lai and F. Peng, ‘‘Multilevel converters Ð A new breed of power
converters,'' IEEE Trans. Industry Applications 32(3), 509–517 (1997).
43. S. Bowe and S. Grewal, ‘‘Novel space-vector-based harmonic elim- 58. S. Hal–aacute;sz, A. Hassan, and B. Huu, ‘‘Optimal control of three-
ination inverter control,'' IEEE Trans. Industry Applicationbs 36(2), level PWM inverters,'' IEEE Trans. Industrial Electronics 44(1), 96–106
549–557 (2000). (1997).