Page 258 - Renewable Energy Devices and System with Simulations in MATLAB and ANSYS
P. 258

Electric Generators and their Control for Large Wind Turbines               245


                                           jq
                                     ω r                P <0
                                                         S
                                                         i q <0
                                           –R i
                                             S S
                                                V SO
                                           δ v
                                                             ω r
                                                         i
                                       i d            L dm F     d
                                               δ v     L i
                                                        d d
                                           ji q  ψ    jL i
                                                       q q
                                      i SO        SO
            FIGURE 9.32  Vector diagram of DCE-SG at cos φ = 1 (generator mode).


                                                  3    a      3
                              iR s + V so = ωψ ;  T e =  p ψ  i q = − ψ ;  i q < 0    (9.40)
                              so
                                           so
                                         r
                                                     1
                                                                 i s s
                                                  2    d      2
            Figure 9.32 illustrates (9.41).
              From (9.41) and Figure 9.32 neglecting R  (R  = 0), the following can be obtained:
                                                  s
                                               s
                                       Li        V                2
                              sin δ v ( ) =  qq  ; ψ s ≈  so  = ( Li  Li  Li          (9.41)
                                                               dd) +
                                                         dm Fo +
                                                                      22
                                                                      qq
                                       ψ s       ω r
                          tan δ v ( ) =  do i s  ; (  d i < 0 , q i < ) 0  e T =  3  p 1 ψ soso i  ; i =  do i +  2 qo i  (9.42)
                                                                        2
                                                                  so
                                   qo i                 2
                                               *
                                                                                       *
                                            *
                                                       *
                                                                    *
                                                             *
                                                                       *
                                         *
                                                                    d ,
                                             ,
            From (9.42) and (9.43), for given ω 1 , VT e , first, ψ so , then i so , then ii q , and then finally, i F , for
                                            so
                                                                     *
            unity power factor (cos φ  = 1), can be calculated. The reference value i F  for cos φ  = 1 may be cor-
                                                                             1
                                1
            rected to parameter detuning by a correction loop based on the power factor angle error (φ  − φ ),
                                                                                     *
                                                                                         1
                                                                                     1
                          *
            in steady state (φ  = 0). Now the thing missing for vector control is only the rotor position θ  and
                                                                                       er
                          1

                  *
            speed ω r . A stator flux ψ s  estimator based on a voltage model may be used as an operation when very
            low speed is not needed (if it is, V comp   ≠−  0, then, a combined voltage and current model estimator
            will do like (9.43) through (9.45)).
                                 ψ s = (  s V −  R s s i +  V comp dt ) ;  ψ d =  ψ s − Li  (9.43)


                                      ∫
                                                            a
                                                                   q s
              In the stator coordinates,
                                               a
                                                         a
                                                   a
                                             ψ d = ψ αd +  j ψ βd                     (9.44)
                                                       ψ β 
                                            θ er = tan −1   d                       (9.45)
                                                       ψ αd 

                                                          ˆ
              A PLL observer is used to get the refinement values of θ er  and ω r . Finally, a vector control system
            as shown in Figure 9.33 may be obtained.
   253   254   255   256   257   258   259   260   261   262   263