Page 637 - The Mechatronics Handbook
P. 637
0066_Frame_C20.fm Page 107 Wednesday, January 9, 2002 1:46 PM
The mathematical model of synchronous reluctance micromotors in the abc variables is found to be
1
2
2
(
2
-------- = ------ ( r s i as – u as ) 4L ls + 3L m – 3L ∆m + 8L mL ls – 4L ls L ∆m cos 2q r )
di as
dt L D
+ ( r s i bs – u bs ) 3L m – 3L ∆m + 2L mL ls + 4L ls L ∆m cos 2 q r – 1 --p
2
2
3
2
+ ( r s i cs – u cs ) 3L m – 3L ∆m + 2L mL ls + 4L ls L ∆m cos 2 q r + 1
2
--p
3
2
63L ∆m L ls w r i cs –(+ 2 i bs ) + ( 8L ∆m L ls w r + 12L ∆m L mL ls w r )
--p i bs +
× sin 2q r i as + sin 2 q r – 1 sin 2 q r + 1 --p i cs
3 3
1 2 2 1
-------- = ------ ( r s i as – u as ) 3L m – 3L ∆m + 2L mL ls + 4L ls L ∆m cos 2 q r – --p
di bs
3
dt L D
2
+ ( r s i bs – u bs ) 4L ls + 3L m – 3L ∆m + 8L mL ls – 4L ls L ∆m cos 2 q r + 1 --p
2
2
3
2
+ ( r s i cs – u cs ) 3L m – 3L ∆m + 2L mL ls + 4L ls L ∆m cos 2q r ]
[
2
63L ∆m L ls w r i as –(+ 2 i cs ) + ( 8L ∆m L ls w r + 12L ∆m L mL ls w r )
2
× sin 2 q r – 1 --p i as + sin 2 q r + 1 sin 2q r i cs
--p i bs +
3
3
1 2 2 1
-------- = ------ ( r s i as – u as ) 3L m – 3L ∆m + 2L mL ls + 4L ls L ∆m cos 2 q r + --p
di cs
3
dt L D
2
2
+ ( r s i bs – u bs ) 3L m – 3L ∆m + 2L mL ls + 4L ls L ∆m cos 2q r )
(
2
+ ( r s i cs – u cs ) 4L ls + 3L m – 3L ∆m + 8L mL ls – 4L ls L ∆m cos 2 q r – 1
2
2
--p
3
2
63L ∆m L ls w r i bs –(+ 2 i as ) + ( 8L ∆m L ls w r + 12L ∆m L mL ls w r )
× sin 2 q r + 1 sin 2q r i bs + sin 2 q r – 1
--p i as +
--p i cs
3
3
--------- = P 2 2 2q r + 2i as i bs sin 2 q r – 1 2i as i cs sin 2 q r + 1 --p
--p +
dw r
----- L ∆m i as sin
dt 4J 3 3
P
--p +
2
+ i bs sin 2 q r – 2 2i bs i cs sin 2q r + i cs sin 2 q r + 2 – B m -----T L
2
--p
------w r –
3
3
2J
J
dq r
-------- =
dt w r
©2002 CRC Press LLC

