Page 115 - Wind Energy Handbook
P. 115

THE EFFECTS OF A DISCRETE NUMBER OF BLADES                              89

                                                   q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         1   1    1
                                      a ¼ þ    f     1   f þ f  2                 (3:84)
                                         3   3    3
             The radial variation of the average value of a, as given by Equation (3.84), and the
             value local to the blade a=f is shown in Figure 3.36. An exact solution would also
             have the local induced velocity falling to zero at the blade tip.
               Clearly, the required blade design for optimal operation would be a little differ-
             ent to that which corresponds to the Prandtl tip-loss factor because a=f, the local
             flow factor, does not fall to zero at the blade tip. The use of the Prandtl tip-loss
             factor leads to an approximation, but that was recognized from the outset.
               The blade design, which gives optimum power output, can now be determined
             by adapting Equations (3.66) and (3.67) accordingly
                                                              0      1
                                                2 2
                                              4º ì a9           1   a
                              ó r ºC l ¼ s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                              @     aA
                                                             2
                                            a  2         a9     1
                                         1     þ ºì 1 þ             f
                                            f             f
             Introducing Equation (3.83) gives
                                                  4a(1   a)
                              ó r ºC l ¼ v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  (3:85)
                                      u           2  2             33 2
                                      u                         a
                                      u                   a 1
                                      u         2 6  6            77
                                      t      a    4  4          f 55
                                         1      þ ºì 1 þ
                                                             2 2
                                             f              º ì f
             The blade geometry parameter given by Equation (3.85) is shown in Figure 3.37
             compared with the design which excludes tip-loss. As can be seen, only in the tip
             region is there any difference between the two designs.

                      0.6
                    Axial flow induction factor  0.4







                      0.2



                        0
                         0               0.2              0.4        0.6              0.8           1
                                                   r/R
                               Azimuthal average
                               Local to the blade
             Figure 3.36  Axial Flow Factor Variation with Radius for a Three-blade Turbine Optimized
             for a Tip Speed Ratio of 6
   110   111   112   113   114   115   116   117   118   119   120