Page 204 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 204

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap13 Final Proof page 200  3.1.2007 9:07pm Compositor Name: SJoearun




               13/200  ARTIFICIAL LIFT METHODS
               13.5.4 Valve selection and testing        Solution
               Valve selection starts from sizing of valves to determine
                                                                             2,500
               required proper port size A p and area ratio R. Valve test-  A p ¼  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
               ing sets dome pressure P d and/or string load S t . Both of          h     2     1:3þ1 i
                                                                              1:3
               the processes are valve-type dependent.       1,248(0:6)(900)  (1:3 1)(0:75)(110þ460)  600 k    600  1:3
                                                                                      900
                                                                                           900
                                                                    2
                                                          A p ¼ 0:1684 in:
               13.5.4.1 Valve Sizing                              p ffiffiffiffiffiffiffiffiffiffiffi
               Gas lift valves are sized on the basis of required gas  d p ¼ 1:1284 1:684 ¼ 0:4631 in:
               passage through the valve. All the equations presented in        1
               Section 13.4.2.3 for choke flow are applicable to valve port  Table 13.1 shows that an Otis 1 ⁄ 2 -in. outside diameter
                                                                    1
               area calculations. Unloading and operating valves (ori-  (OD) valve with ⁄ 2 -in. diameter seat will meet the require-
               fices) are sized on the basis of subcritical (subsonic flow)  ment. It has an R value of 0.2562.
               that occurs when the pressure ratio P t =P c is greater than
               the critical pressure ratio defined in the right-hand side of
               Eq. (13.11). The value of the k is about 1.28 for natural  13.5.4.2 Valve Testing
               gas. Thus, the critical pressure ratio is about 0.55. Re-  Before sending to field for installation, every gas lift valve
               arranging Eq. (13.12) gives               should be set and tested at an opening pressure in the shop
                                q gM                     that corresponds to the desired opening pressure in the
               A p ¼      s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   :  (13:56)

                                     2   kþ1             well. The pressure is called test rack opening pressure
                              k     p dn  k  p dn  k     (P tro ). The test is run with zero tubing pressure for pres-
                   1,248Cp up
                           (k 1)g g T up  p up  p up
                                                         sure-operated valves and zero casing pressure for fluid-
                                                         operated valves at a standard temperature (60 8F in the
               Since the flow coefficient C is port-diameter dependent,
               a trial-and-error method is required to get a solution.  U.S. petroleum industry). For pressure-operated unbal-
               A conservative C value is 0.6 for orifice-type valve ports.  anced bellow valves at zero tubing pressure, Eq. (13.42)
               Once the required port area is determined, the port diam-  becomes
                                                 ffiffiffiffiffiffi
                                               p
               eter can then be calculated by d p ¼ 1:1284 A p and  P d at 60 F

                                    1
               up-rounded off to the nearest ⁄ 16 in.    P tro ¼     þ S t :                (13:57)
                The values of the port area to bellows area ratio R are  1   R
               fixed for given valve sizes and port diameters by valve  For fluid-operated valves at zero casing pressure,
               manufacturers. Table 13.4 presents R values for Otis  Eq. (13.44) also reduces to Eq. (13.57) at zero casing
               Spreadmaster Valves.                      pressure and 60 8F.
                                                          To set P d at 60 8F to a value representing P d at
               Example Problem 13.6 Size port for the data given  valve depth condition, real gas law must be used for cor-
               below:                                    rection:
                 Upstream pressure:         900 psia
                 Downstream pressure for subsonic        P d at 60 F ¼  520z 60   F P d  ,  (13:58)

                   flow:                    600 psia                 T d z d
                 Tubing ID:                 2.259 in.
                 Gas rate:                  2,500 Mscf/day  where
                 Gas-specific gravity:      0.75 (1 for air)  T d ¼ temperature at valve depth, 8R
                 Gas-specific heat ratio:   1.3            z d ¼ gas compressibility factor at valve depth condition.
                 Upstream temperature:      110 8F        The z factors in Eq. (13.58) can be determined using the
                 Gas viscosity:             0.02 cp      Hall–Yarborogh correlation. Computer spreadsheet Hall-
                 Choke discharge coefficient:  0.6       Yarborogh-z.xls is for this purpose.
                 Use Otis Spreadmaster Valve
                    Table 13.4 R Values for Otis Spreadmaster Valves
                        Port        9 ⁄ 16 -in. OD Valves  1-in. OD Valves  1 ⁄ 2 -in. OD Valves
                                                                             1
                    Diameter (in.)
                                   R    1   R  T.E.F.  R    1   R  T.E.F.  R    1   R  T.E.F.
                    1
                    ( ⁄ 8 )  0.1250  0.1016  0.8984  0.1130  0.0383  0.9617  0.0398
                         0.1520  0.1508  0.8429  0.1775
                         0.1730  0.1958  0.8042  0.2434
                    3
                    ( ⁄ 16 ) 0.1875                  0.0863  0.9137  0.0945  0.0359  0.9641  0.0372
                         0.1960  0.2508  0.7492  0.3347
                    13
                    ( ⁄ 64 ) 0.2031                  0.1013  0.8987  0.1127
                         0.2130  0.2966  0.7034  0.4216
                         0.2460  0.3958  0.6042  0.6550
                    1
                    ( ⁄ 4 )  0.2500                  0.1534  0.8466  0.1812  0.0638  0.9362  0.0681
                    9
                    ( ⁄ 32 ) 0.2812                  0.1942  0.8058  0.2410
                    5
                    ( ⁄ 16 ) 0.3125                  0.2397  0.7603  0.3153  0.0996  0.9004  0.1106
                     1
                    (1 ⁄ 32 ) 0.3437                 0.2900  0.7100  0.4085
                    3
                    ( ⁄ 8 )  0.3750                  0.3450  0.6550  0.5267  0.1434  0.8566  0.1674
                    7
                    ( ⁄ 16 ) 0.4375                  0.4697  0.5303  0.8857  0.1952  0.8048  0.2425
                    1
                    ( ⁄ 2 )  0.5000                                      0.2562  0.7438  0.3444
                    9
                    ( ⁄ 16 ) 0.5625                                      0.3227  0.6773  0.4765
                    5
                    ( ⁄ 8 )  0.6250                                      0.3984  0.6016  0.6622
                    3
                    ( ⁄ 4 )  0.7500                                      0.5738  0.4262  1.3463
   199   200   201   202   203   204   205   206   207   208   209