Page 338 - Acquisition and Processing of Marine Seismic Data
P. 338

6.3 SPIKING DECONVOLUTION                         329

















           FIG. 6.17  Comparison of the performance of inverse filtering in spiking deconvolution for a maximum phase wavelet.
           (A) Input wavelet w(t) ¼ ( 1, 2) with the desired zero lag spike output, and its inverse filter outputs using deconvolution
           operators (B) h(t) ¼ ( 1,  2,  4), (C) h(t) ¼ ( 1,  2,  4,  8).

           TABLE 6.6 Convolution of Minimum Phase Input  TABLE 6.8 Convolution of Maximum Phase Input
           Wavelet w(t) ¼ (2,  1) with a Two-Term Deconvolution  Wavelet w(t) ¼ ( 1, 2) with a Two-Term Deconvolution
           Operator h(t) ¼ (a, b)                       Operator h(t) ¼ (a, b)

               2   21       Actual Output  Desired Output
                                                            21    2      Actual Output  Desired Output
           b   a            2a            1             b   a             a            1
               b   a        2b a          0                 b     a       b+2a         0
                   b     a   b            0                       b  a   2b            0
           Desired output is a zero-lag spike (1, 0, 0).  Desired output is a zero-lag spike (1, 0, 0).


           TABLE 6.7 Deconvolution Output by Convolving
           Minimum Phase Input Wavelet w(t) ¼ (2,  1) With Filter  which the inverse filter produces unacceptable
           Coefficients h(t) ¼ (10/21, 4/21) Obtained by a Least  results. After convolving the filter coefficients
           Squares Approximation
                                                        h(t) ¼ (a, b) with the input maximum phase
                                                        wavelet w(t) ¼ ( 1, 2), the actual output is
                   2       21              Actual Output
                                                        shown in Table 6.8.
           4/21    10/21                   0.95
                                                           The cumulative error energy E based on the
                   4/21    10/21            0.095       results in Table 6.8 is
                           4/21    10/21    0.19                      2              2         2
                                                               ð
                                                              ½
                                                           E ¼ aÞ 1Š +  b +2að½  Þ 0Š +2bðÞ 0Š
                                                                                        ½
                                                                                              (6.15)
           much closer to a zero-lag spike than the result  By taking the partial derivatives of error energy
           obtained by inverse filtering.               E with respect to a and b, and setting them to
              A least-squares approximation in inverse fil-  zero, we get
           tering produces a suitable result in converting  ∂E
           a minimum phase input into a zero-lag spike.       ¼ 10a 4b +2 ¼ 0 ) 5a 2b ¼ 1
                                                            ∂a
           What if the input wavelet is not minimum                                           (6.16)
           phase? We can perform the same analysis using     ∂E  ¼ 10b 4a ¼ 0  ) 2a +5b ¼ 0
           the maximum phase wavelet w(t) ¼ ( 1, 2) on       ∂b
   333   334   335   336   337   338   339   340   341   342   343