Page 199 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 199

The unique feature of the Horner-Wittig reaction is that the addition intermediate  171
              can be isolated and purified, which provides a means for control of the reaction’s
              stereochemistry. It is possible to separate the two diastereomeric adducts in order to  SECTION 2.4
              prepare the pure alkenes. The elimination process is syn, so the stereochemistry of the  Olefination Reactions of
                                                                                          Stabilized Carbon
              alkene that is formed depends on the stereochemistry of the adduct. Usually the anti  Nucleophiles
              adduct is the major product, so it is the Z-alkene that is favored. The syn adduct is
              most easily obtained by reduction of  -ketophosphine oxides. 269

                       O                                                O
                    Ph PCHCH CH Ph                           PhCH CH 2    CH 3
                                                                 2
                      2
                             2
                               2
                        CH 3   1) BuLi                   NaBH 4   Ph P  CH 3
                                                                    2
                     2) CH CH  O                              HO     O
                         3
                                 H
                                    OH                           H
                                                         2
                        PhCH CH 2              +     PhCH CH 2
                            2
                                     CH 3    separate             CH 3
                                   CH                      Ph P  CH 3
                              Ph P   3                       2
                                2
                                O                        NaH  O
                                     NaH
                                     CH 2 CH 2 Ph
                               CH 3                    CH 3  CH CH Ph
                                                                2
                                                                   2
                                 H   CH 3              CH 3  H
              2.4.2. Reactions of  -Trimethylsilylcarbanions with Carbonyl Compounds
                  Trialkylsilyl groups have a modest stabilizing effect on adjacent carbanions (see
              Part A, Section 3.4.2). Reaction of the carbanions with carbonyl compounds gives
               -hydroxyalkylsilanes.  -Hydroxyalkylsilanes are converted to alkenes by either acid
              or base. 270  These eliminations provide the basis for a synthesis of alkenes. The reaction
              is sometimes called the Peterson reaction. 271  For example, the Grignard reagent derived
              from chloromethyltrimethylsilane adds to an aldehyde or ketone and the intermediate
              can be converted to a terminal alkene by acid or base. 272

                           Mg or Li             R C  O                acid
                                                 2
                                                                       or
              (CH ) SiCH X          (CH ) SiCH M        (CH ) SiCH CR      CH 2  CR 2
                                       3 3
                                             2
                       2
                 3 3
                                                           3 3
                                                                    2
                                                                 2
                                                                      base
                                    M = Li or MgX                 OH
              Alternatively, organolithium reagents of the type  CH   SiCH Li Z, where Z is a
                                                           3 3
              carbanion-stabilizing substituent, can be prepared by deprotonation of  CH   SiCH Z
                                                                                 2
                                                                           3 3
              with n-butyllithium.
                                                      R C  O
                                       n-BuLi          2
                                                              2
                            (CH ) SiCH Z    (CH ) SiCHZ      R C  CHZ
                                               3 3
                                    2
                               3 3
                                                  Li
              269   A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 2307 (1985).
              270
                 P. F. Hudrlik and D. Peterson, J. Am. Chem. Soc., 97, 1464 (1975).
              271   For reviews, see D. J. Ager, Org. React., 38, 1 (1990); D. J. Ager, Synthesis, 384 (1984); A. G. M. Barrett,
                 J. M. Hill, E. M. Wallace, and J. A. Flygare, Synlett, 764 (1991).
              272
                 D. J. Peterson, J. Org. Chem., 33, 780 (1968).
   194   195   196   197   198   199   200   201   202   203   204