Page 202 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 202

174                                       Scheme 2.19. (Continued)

      CHAPTER 2          13 l
      Reactions of Carbon                                                CH 3 O       CH 3
      Nucleophiles with   CH 3 O  CH 3          CH 3                           H  CH 3
      Carbonyl Compounds       H                               1) –30°C
                                        + (C 2 H 5 ) 3 SiC  CHN                         CHO
                                    CHO                      2) CF 3 CO 2 H, 0°C
                                                     Li
                                                                        CH 3
                        CH 3                                                 OTBDMS    91%
                             OTBDMS
                        a. K. Shimoji, H. Taguchi, H. Yamamoto, K. Oshima, and H. Hozaki, J. Am. Chem. Soc., 96, 1620 (1974).
                        b. P. A. Grieco, C. L. J. Wang, and S. D. Burke, J. Chem. Soc. Chem. Commun., 537 (1975).
                        c. I. Matsuda, S. Murata, and Y. Ishii, J. Chem. Soc., Perkin Trans. 1, 26 (1979).
                        d. F. A. Carey and A. S. Court, J. Org. Chem., 37, 939 (1972).
                        e. F. A. Carey and O. Hernandez, J. Org. Chem., 38, 2670 (1973).
                        f. D. Seebach, M. Kolb, and B.-T. Grobel, Chem. Ber., 106, 2277 (1973).
                        g. B. T. Grobel and D. Seebach, Chem. Ber., 110, 852 (1977).
                        h. P. Magnus and G. Roy, Organometallics, 1, 553 (1982).
                        i. W. Adam and C. M. Ortega-Schulte, Synlett, 414 (2003).
                        j. L. F. van Staden, B. Bartels-Rahm, J. S. Field, and N. D. Emslie, Tetrahedron, 54, 3255 (1998).
                        k. J.-M. Galano, G. Audran, and H. Monti, Tetrahedron Lett., 42, 6125 (2001).
                        l. S. F. Martin, J. A. Dodge, L. E. Burgess, and M. Hartmann, J. Org. Chem., 57, 1070 (1992).


                       unstable olefins. Entries 1 to 8 show the use of lithio silanes having a range of anion-
                       stabilizing groups. The anions are prepared using alkyllithium reagents or lithium
                       amides. Entries 9 to 11 illustrate the utility of the reaction to prepare relatively unstable
                       substituted alkenes. The silyl anions are typically more reactive than stabilized Wittig
                       ylides, and in the case of Entry 12 good results were obtained while the triphenylphos-
                       phonium ylide was unreactive. Entry 13 shows the use of Peterson olefination for
                       chain extension with an  -methyl- 	 -unsaturated aldehyde. The preferred reagent
                       for this transformation is a lithio  -trialkylsilylenamine. 276

                                                            Li
                                                (C H ) Si   N
                                                  2 5 3
                                                     CH 3



                       2.4.3. The Julia Olefination Reaction
                           The Julia olefination involves the addition of a sulfonyl-stabilized carbanion to
                       a carbonyl compound, followed by elimination to form an alkene. 277  In the initial
                       versions of the reaction, the elimination was done under reductive conditions. More
                       recently, a modified version that avoids this step was developed. The former version is
                       sometimes referred to as the Julia-Lythgoe olefination, whereas the latter is called the
                       Julia-Kocienski olefination. In the reductive variant, the adduct is usually acylated and
                       then treated with a reducing agent, such as sodium amalgam or samarium diiodide. 278

                       276
                          R. Desmond, S. G. Mills, R. P. Volante, and I. Shinkai, Tetrahedron Lett., 29, 3895 (1988).
                       277   P. R. Blakemore, J. Chem. Soc., Perkin Trans. 1, 2563 (2002).
                       278
                          A. S. Kende and J. Mendoza, Tetrahedron Lett., 31, 7105 (1990); G. E. Keck, K. A. Savin, and
                          M. A. Weglarz, J. Org. Chem., 60, 3194 (1995); K. Fukumoto, M. Ihara, S. Suzuki, T. Taniguchi,
                          and Y. Yokunaga, Synlett, 895 (1994); I. E. Marko, F. Murphy, and S. Dolan, Tetrahedron Lett., 37,
                          2089 (1996); I. E. Marko, F. Murphy, L. Kumps, A. Ates, R. Touillaux, D. Craig, S. Carballares, and
                          S. Dolan, Tetrahedron, 57, 2609 (2001).
   197   198   199   200   201   202   203   204   205   206   207