Page 520 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 520

494              6.1.4.2. Synthetic Applications of the Diels-Alder Reaction. Diels-Alder reactions
                       have long played an important role in synthetic organic chemistry. 74  The reaction of
      CHAPTER 6        a substituted benzoquinone and 1,3-butadiene, for example, was the first step in one
      Concerted        of the early syntheses of steroids. The angular methyl group was introduced by the
      Cycloadditions,
      Unimolecular     methyl group on the quinone and the other functional groups were used for further
      Rearrangements, and  elaboration.
      Thermal Eliminations
                                           O
                                                                         O
                                               CH 3         benzene        CH 3
                                                   +
                                   CH O                      100°C
                                      3
                                                                  CH 3 O
                                           O                             O  H
                                                                             86%
                                                                                       Ref. 75
                       In a synthesis of gibberellic acid, a diene and quinone, both with oxygen-substituted
                       side chains, gave the initial intermediate. Later in the synthesis, an intramolecular D-A
                       reaction was used to construct the A-ring.
                                                                          Cl      H
                                        O                    O
                                                           H
                          CH                      80°C
                            2                                        several
                                                                                       OMEM
                             +  Ph                                   steps   O
                                  O        OCH 3  30 h          OCH 3      O          CH
                          CH OH         O            HOCH 2  O                          2
                           2
                                                                                160°C
                                                          OCH Ph
                                                             2                  45 h
                                                    HO  O   O H
                                                                                  H
                                                                     several  Cl
                                                                  OH
                                                       3             steps
                                                      CH CH 3
                                                                          O   H        OMEM
                                                                 CH 2
                                                                             O
                                                           gibberellic acid           CH 2
                                                                                       Ref. 76
                           Functionality can be built into either the diene or dienophile for purposes of
                       subsequent transformations. For example, in the synthesis of prephenic acid, the diene
                       has the capacity to generate an enone. The dienophile contains a sulfoxide substituent
                       that is subsequently used to introduce a second double bond by elimination.
                              OCH
                                 3                      CH O O                   O
                                    O                     3    O
                                       O CO CH 3                    CH              O
                                           2
                                                                                         2
                                  +             100°C             CO 2  3  HOAc        CO CH 3
                        TMSO             OCH 3   26 h             OCH 3               OCH 3
                                                    TMSO                    O
                                   SPh                     SPh
                                 O                       O
                                                                                       Ref. 77
                        74
                          K. C. Nicolaou, S. A. Snyder, T. Montagnon, and G. Vassilikogiannakis, Angew. Chem. Int. Ed. Engl.,
                          41, 1668 (2002).
                        75
                          R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and W. M. McLamore, J. Am. Chem. Soc., 74,
                          4223 (1952).
                        76   E. J. Corey, R. L. Danheiser, S. Chandrasekaran, P. Siret, G. E. Keck, and J.-L. Gras, J. Am. Chem.
                          Soc., 100, 8031 (1978); E. J. Corey, R. L. Danheiser, S. Chandrakeskaran, G. E. Keck, B. Gopalan,
                          S. D. Larsen, P. Siret, and J.-L. Gras, J. Am. Chem. Soc., 100, 8034 (1978).
                        77
                          S. J. Danishefsky, M. Hirama, N. Fitsch, and J. Clardy, J. Am. Chem. Soc., 101, 7013 (1979).
   515   516   517   518   519   520   521   522   523   524   525