Page 102 - Basic Structured Grid Generation
P. 102

Structured grid generation – algebraic methods  91

                        and the last row becomes
                                                     2     2
                                                    (t n−1  − t )  (t n−1 + t n )(2t n−1 + t n )
                                                           n
                                0   –   –    –  0                                    .     (4.60)
                                                      t n−1            t n−1

                        Method 4 Here we prescribe the gradients y , y of the interpolating curve at the

                                                                   n
                                                               0
                        end-points. If these gradients are known, we obtain the best cubic spline fit of all
                        these methods. However, we commonly have only estimates of their values at our
                        disposal.
                          Using eqn (4.51), we obtain
                                        1       y 1 − y 0  1             1      1       y 1 − y 0

                          y = φ (x 0 ) =− y t 1 +      − t 1 (y − y ) =− y t 1 − y t 1 +      ,
                           0    1          0                  1   0        0      1
                                        2         t 1    6               3      6         t 1
                        and hence
                                                      1             y 1 − y 0



                                              y t 1 =− y t 1 − 3y + 3     .                (4.61)
                                               0        1      0
                                                      2               t 1
                          Substituting from (4.61) into the first equation (i = 1) of eqn (4.52) gives

                                          3                  y 2 − y 1  y 1 − y 0

                                      y      t 1 + 2t 2 + y t 2 = 6  − 9      + 3y         (4.62)
                                       1              2                           0
                                          2                    t 2       t 1
                        Similarly we can show that the last equation (i = n − 1) of eqn (4.52) becomes
                                                   3       y n − y n−1  y n−1 − y n−2



                            y n−2 n−2 + y     2t n−1 + t n  = 9     − 6           − 3y .   (4.63)
                                t
                                                                                      n
                                       n−1
                                                   2          t n          t n−1
                          The other equations of (4.52) are unchanged, and hence we obtain the matrix
                        equation
                                                                                  
                                                        y 2 − y 1  y 1 − y 0
                                                       6       − 9        + 3y
                                                                              0
                                                           t 2       t 1
                                                                                  
                                         y
                                                                                
                                          1               y 3 − y 2  y 2 − y 1    
                                                          6       − 6
                                                                                  
                                      y  2                t 3        t 2        
                                     
                                                                                   
                                                 
                                             
                                                           y 4 − y 3  y 3 − y 2
                                                                                
                                         y                6       − 6
                                                                                
                                         3                                      
                                                             t 4        t 3
                                                                                
                                   A    –     =                                   ,    (4.64)
                                                               –                
                                                                                
                                         –
                                                               –                
                                                                                
                                         –             y n−1 − y n−2  y n−2 − y n−3
                                                                                
                                                      6           − 6
                                                                                
                                                                                  
                                        y                t n−1          t n−2     
                                         n−1                                      
                                                     y n − y n−1  y n−1 − y n−2
                                                                                   
                                                    9         − 6            − 3y n
                                                         t n         t n−1
                        where again the matrix A is the same as in the above sections, except for the first row,
                        which becomes
                                              3           00     –    –  0 ,               (4.65)

                                              2  t 1 + 2t 2  t 2
                        and the last row, which is
                                                                           3
                                           0  –    –   –   0 t n−1  2t n−1 + t n .         (4.66)
                                                                           2
   97   98   99   100   101   102   103   104   105   106   107