Page 305 - Biomedical Engineering and Design Handbook Volume 2, Applications
P. 305

THE PRINCIPLES OF X-RAY COMPUTED TOMOGRAPHY  283


























              FIGURE 10.14  Projection of object f(x, y) for angle q.  FIGURE 10.15  Parallel projections with varying angle.



                          The Fourier Slice Theorem. The two-dimensional Fourier transform of the object function,
                          according to Eq. (10.37), is given by
                                                     ∞
                                             Fu v) =  ∫ −∞ f x y) exp[− i2π ( ux vy dx dy   (10.57)
                                                                      +
                                                        (
                                                         ,
                                                ,
                                               (
                                                                         )
                                                                         ]
                          where (u, v) is the Fourier space, or frequency domain variables, conjugate to the physical space vari-
                          ables (x, y). For a parallel projection at an angle q, we have the Fourier transform of the line integral
                          [Eq. (10.56)], written as
                                                         ∞
                                                  Sw) = ∫  P r) exp(− i π wr dr             (10.58)
                                                   (
                                                                       )
                                                                   2
                                                            (
                                                  θ        θ
                                                        −∞
                          The relationship between the rotated (r, s) coordinate system and the fixed (x, y) coordinate system
                          is given by the matrix equation
                                                             θ
                                                      r ⎡ ⎤  ⎡ cos sinθ  ⎤  x ⎡ ⎤
                                                     ⎢ ⎥  =  ⎢     ⎥⎢ ⎥                     (10.59)
                                                              θ
                                                      s ⎣ ⎦  ⎣ −sin cosθ ⎦  y ⎣ ⎦
                          Defining the object function in terms of the rotated coordinate system, for the projection along lines
                          of constant r, we have
                                                             ∞
                                                      Pr() =  ∫ −∞ f r s ds                 (10.60)
                                                                  )
                                                               (,
                                                       θ
                          Substituting this into Eq. (10.58) gives
                                                      ∞  ⎡  ∞  ⎤
                                                        ∫
                                               Sw) = ∫ −∞ ⎣ ⎢ −∞ f r s) exp(− i π wr dr     (10.61)
                                                                         )
                                                                     2
                                                             ,
                                                            (
                                                 (
                                                θ
                                                               ⎦ ⎥
                          This can be transformed into the (x, y) coordinate system using Eq. (10.59), to give
                                                ∞  ∞
                                                                      θ
                                         Sw) =  ∫ − −∞ ∫ −∞ f x y) exp[− i π w x cos +  ysin θ)]  dx dy  (10.62)
                                                     (
                                                       ,
                                                              2
                                                                 (
                                           (
                                          θ
   300   301   302   303   304   305   306   307   308   309   310