Page 580 - Dynamics of Mechanical Systems
P. 580

0593_C16_fm  Page 561  Tuesday, May 7, 2002  7:06 AM





                       Mechanical Components: Cams                                                 561



                                                            Follower
                                                            Rise
                                                                   h(θ)
                                                              h
                                                               2
                                                                                  cosine
                                                                                   Rise
                                                                                 Segment
                                                              h
                                                               1
                                                                                            θ
                       FIGURE 16.12.2                                    θ 1     θ  2
                       Fitting a cosine segment to obtain a
                       desired follower rise.                         Cam Rotation Angle
                        Finally, to fit the rise between the dwell segments of Figure 16.12.2, we may employ the
                       step functions of Section 16.10. Specifically, for a dwell at h  to θ , a rise to h  to θ , and a
                                                                                1
                                                                                          2
                                                                           1
                                                                                               2
                       dwell at h  beyond θ , the follower function h(θ) is:
                                2
                                         2
                                               δ θθ )]
                                           [
                                                                     δ θ θ )]
                                                                                  (
                                                               −
                                                                                    −
                                    h θ () =  h 1 − (  −  + φ δ θθ ) − (  −  + h δ θθ )       (16.12.4)
                                           1    1    1       ( [ 1  1  1   2    2 1    2
                        A casual inspection of Figure 16.12.2 might suggest that there is a “smooth” transition
                       between the dwell and rise segments. A closer examination, however, shows that we have
                       finite changes in the acceleration of the transition points. This in turn means that we have
                       infinite jerk of these points, producing sudden changes in inertia loading. We can see this
                       by examining the derivatives of h(θ). Specifically, from Eq. (16.12.4) we have:
                                           dh    h (       dφ               − )]
                                             =− δθ     − ) +θ   δθ θ     δ
                                                                   − ) − (θ θ
                                               
                                           dt    10     1   dθ  ( [ 1  1  1   2
                                                                                              (16.12.5)
                                                                                
                                                                      h (θ θ
                                                      − ) − (θ θ
                                               + φδ θ θ     δ   − )] + δ    − ) ω
                                                             0
                                                                       2 0
                                                                              2
                                                         1
                                                                  2
                                                    ( [ 0
                                                                                
                                          
                                      2
                                                         2
                                    dh  =−  h δ   −  1) +  d φ 2[ δθ − θ 1) − (θ θ 2)]
                                                             1(
                                                                     δ
                                             1 (θ θ
                                                                         −
                                          
                                     dt 2    − 1       dθ            1
                                            dφ
                                                 0( [
                                                             −
                                                                                    −
                                                         δ
                                                                         −
                                                                               δ
                                           +  2  δ θ − θ 1) − (θθ  + φ δ  1(θθ 1) − (θ θ 2)]  (16.12.6)
                                            dθ            0    2)] [ −          − 1
                                                      
                                             2 (θ θ
                                           +  h δ − 1  −  1) ω 2
                                                      
                       and
                                       
                                                       3
                                   3
                                  dh  =−  h δ   −  1) +  d φ 3[ δθ − θ 1) − (θ θ 2)]
                                                          1(
                                       
                                                                   δ
                                                                       −
                                           1 (θ θ
                                  dt 3     − 2       dθ            1
                                           d φ                      dφ
                                            2
                                                0(
                                                                                 δ
                                                                            −
                                                                                      −
                                       +  3    2[ δθ − θ 1) − (θ θ 2)] +  3  δ  1(θ θ 1) − (θ θ 2)]  (16.12.7)
                                                            −
                                                        δ
                                           dθ            0          dθ  [ −       − 1
                                                                           
                                       + φδ − [  2(θ θ 1) − δ ( θ θθ )] + h  δ ( θ θ ) ω 3
                                                                       −
                                                          −
                                                −
                                                       −
                                                                   −2
                                                             2
                                                                 2
                                                       2
                                                                         2
                                                                           
   575   576   577   578   579   580   581   582   583   584   585