Page 44 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 44
Bars and Trusses 29
y j x
Y u ′ i
i v i
u i
X
FIGURE 2.8
Local and global coordinates for a bar in 2-D space.
u i
′
u i = u i cos θ + v i sin θ = l m
v i
u i
i
v i =− sin θ+ v i cos θ= − m l
u i
v i
where l = cos θ, m = sin θ.
In matrix form,
l m
′
u i
u i
′ = − m l (2.26)
v i v i
or,
′
u i = Tu i
where the transformation matrix
T = l m (2.27)
−m l
−1
T
is orthogonal, that is, T = T .
For the two nodes of the bar element, we have
′
l m 0 0 u i
i
u i
′
i v
v i − m l 0 0
′ = (2.28)
u j 0 0 l m u j
0 0 − m l
′
j v
v j
or,
T 0
u ′ = Tu with T = (2.29)
0 T