Page 44 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 44

Bars and Trusses                                                             29



                                           y               j     x

                                     Y            u ′ i
                                              i       v i
                                                  u i

                                               X

            FIGURE 2.8
            Local and global coordinates for a bar in 2-D space.


                                                                u i 
                                   ′
                                  u i =  u i cos θ +  v i sin  θ =   l   m  
                                                              
                                                                v i 
                                                                  
                                                                  u i
                                                                
                                   i
                                  v i =− sin θ+  v i cos θ= −    m  l  
                                                                
                                       u i
                                                                  v i
                                                                  
            where l = cos θ, m = sin θ.
              In matrix form,
                                                l  m 
                                            ′
                                           u i 
                                                          u i
                                            ′  =   − m  l                       (2.26)
                                            v i       v i 
            or,

                                                 ′
                                                u i =  Tu i
            where the transformation matrix


                                             T =   l  m                            (2.27)
                                                 
                                                  −m   l  
                                 −1
                                       T
            is orthogonal, that is, T  =  T .
              For the two nodes of the bar element, we have
                                       ′
                                           l   m    0    0  u i 
                                                                i
                                      u i
                                       ′                   
                                                                i v
                                      v i    − m  l  0   0  
                                                             
                                       ′  =                                       (2.28)
                                                               
                                      u j    0  0   l    m u j
                                           
                                                             
                                           0    0   − m   l  
                                       ′
                                                                j v
                                      v j
                                                           
              or,

                                                        T    0 
                                       u ′ = Tu with  T  =                          (2.29)
                                                        
                                                         0  T  
   39   40   41   42   43   44   45   46   47   48   49