Page 45 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 45

30                    Finite Element Modeling and Simulation with ANSYS Workbench



              The nodal forces are transformed in the same way,

                                                 f′ = Tf                              (2.30)

              In the local coordinate system, we have

                                                             ′
                                                      ′
                                           
                                        EA 1     − 1     
                                                     u i 
                                                    
                                                           
                                                            f i 
                                                             ′
                                                      ′
                                         L    − 1  1    =  
                                                            f j 
                                                     u j
                                                          
              Augmenting this equation, we write
                                                          ′
                                          1  0  − 1  0      
                                                                 ′
                                                         u i
                                                                f i
                                                         
                                        
                                                          ′
                                    EA 0     0    0   0  v i    
                                                                0
                                                                
                                        
                                                       
                                                          ′
                                     L  − 1  0   1   0   =  
                                                                 ′
                                                         u j 
                                                                
                                                        
                                                                f j
                                                       
                                          0  0   0   0       
                                                           
                                                          ′
                                                                0
                                                         v j
                                                            
            or,
                                                k′ u′ = f′
              Using transformations given in Equations 2.29 and 2.30, we obtain
                                               k′ Tu = Tf
              Multiplying both sides by T   and noticing that T   T = I, we obtain
                                      T
                                                         T
                                              T   k′ Tu = f                           (2.31)
                                                T
              Thus, the element stiffness matrix k in the global coordinate system is
                                               k = T   k′ T                           (2.32)
                                                   T
            which is a 4 × 4 symmetric matrix.
              Explicit form is
                                                                  j v
                                             u i  v i    u j
                                             l 2  lm     l −  2  − lm
                                                                2 
                                        EA lm      m 2  − lm   − m                   (2.33)
                                           
                                    k =
                                         L   l −  2  − lm  l 2  lm  
                                                   2           2  
                                            −   lm  − m  lm  m  
              Calculation of the directional cosines l and m:
                                           X j −  X i           Y j −  Y i
                                 l = cosθ  =      ,  m = sin θ =
                                              L                   L
   40   41   42   43   44   45   46   47   48   49   50