Page 124 - Fluid Mechanics and Thermodynamics of Turbomachinery
P. 124

Axial-flow Turbines: Two-dimensional Theory  105
                            (ii) At nozzle exit the Mach number is
                                            1/2
                              M 2 D c 2 /.
RT 2 /
                          and it is necessary to solve the velocity diagram to find c 2 and hence to determine
                          T 2 .
                          As   c y3 D 0,  W D Uc y2
                                    W     276 ð 10 3
                               c y2 D    D          D 552 m/s
                                     U        500
                                c 2 D c y2 / sin ˛ 2 D 588 m/s.
                                                                             1 2
                          Referring to Figure 4.2, across the nozzle h 01 D h 02 D h 2 C c , thus
                                                                             2 2
                                        1 2
                              T 2 D T 01  c /C p D 973 K.
                                        2 2
                          Hence, M 2 D 0.97 with 
R D .
  1/C p .
                            (iii) The axial velocity, c x D c 2 cos ˛ 2 D 200 m/s.
                                                    1 2
                            (iv)   tt D W/.h 01  h 3ss  c /.
                                                    2 3
                            After some rearrangement,
                               1    1     c 2 3   1        200 2
                                 D            D                     D 1.0775.
                                tt    ts  2W   0.87   2 ð 276 ð 10 3
                          Therefore   tt D 0.93.
                            (v) Using eqn. (4.22a), the reaction is

                                  1
                              R D .c x /U/.tan ˇ 3  tan ˇ 2 /.
                                  2
                            From the velocity diagram, tan ˇ 3 D U/c x and tan ˇ 2 D tan ˛ 2  U/c x
                              R D 1   1 .c x /U/ tan ˛ 2 D 1  200 ð 0.2745/1000
                                      2
                                D 0.451.

                            EXAMPLE 4.3. Verify the assumed value of total-to-static efficiency in the above
                          example using Soderberg’s correlation method. The average blade aspect ratio for
                          the stage H/b D 5.0, the maximum blade thickness chord ratio is 0.2 and the
                                                                        5
                          average Reynolds number, defined by eqn. (4.14), is 10 .
                            Solution. The approximation for total-to-static efficiency, eqn. (4.10a), is used
                          and can be rewritten as
                                               2
                                                          2
                               1         R .w 3 /U/ C   N .c 2 /U/ C .c x /U/ 2
                                 D 1 C                               .
                                ts                2W/U  2
                          The loss coefficients   R and   N , uncorrected for the effects of blade aspect ratio,
                          are determined using eqn. (4.12) which requires a knowledge of flow turning angle
                            for each blade row.
                            For the nozzles, ˛ 1 D 0 and ˛ 2 D 70 deg, thus   N D 70 deg.
                               Ł
                                                  2
                                D 0.04.1 C 1.5 ð 0.7 / D 0.0694.
                               N
   119   120   121   122   123   124   125   126   127   128   129