Page 271 - Introduction to Computational Fluid Dynamics
P. 271
P1: KsF/ICD
0 521 85326 5
16:28
May 10, 2005
0521853265c08
CB908/Date
250
NV 3 NUMERICAL GRID GENERATION
NV
3
NV 2 NV 2
NE 2
NE 1
NE 2 NE 1
NV 4 NV 4
NV 1 NV 1
a) TYPE 1 b) TYPE 2
Figure 8.10. Construction of triangular elements from a quadrilateral element.
accomplished by a simple routine as follows:
C *** FOR NV (ODD), TYPE1 , FOR NV (EVEN), TYPE2 (IN, JN KNOWN)
NE1=0
DO 1 J=1,JN-1
DO 1 I=1,IN-1
NV=I+(J-1)*IN
NE1=NE1+1
NE2=NE1+1
M=MOD(NV,2)
NV1=NV
NV2=NV1+IN
NV3=NV2+1
NV4=NV1+1
IF(M.EQ.1)THEN
WRITE(6,*)NE1,NV1,NV3,NV2
WRITE(6,*)NE2,NV1,NV4,NV3
ELSE IF(M.EQ.0)THEN
WRITE(6,*)NE1,NV1,NV4,NV2
WRITE(6,*)NE2,NV4,NV3,NV2
ENDIF
NE1=NE2
1 CONTINUE
Figure 8.11 shows the element numbering for the grid shown in Figure 8.9. The
numbering is carried out using the routine given here.
8.5.3 Automatic Grid Generation
Automatic grid generation (AGG) is used to generate elements having desired
properties and desired density (i.e., clustering). For example, when 2D triangular
elements are generated, one may desire that each element has a prespecified area or