Page 116 - MATLAB Recipes for Earth Sciences
P. 116

5.6 Nonlinear Time-Series Analysis (by N. Marwan)               109














           Integrating the differential equation yields a simple MATLAB code for
           computing the xyz triplets of the Lorenz attractor. As system parameters
           controlling the chaotic behaviour we use s=10, r=28 and b=8/3,  the time
           delay is dt=0.01. The initial values are x1=6, x2=9 and x3=25, that can
           certainly be changed at other values.

             dt = .01;
             s = 10;
             r = 28;
             b = 8/3;
             x1 = 8; x2 = 9; x3 = 25;
             for i = 1 : 5000
                x1 = x1 + (-s*x1*dt) + (s*x2*dt);
                x2 = x2 + (r*x1*dt) - (x2*dt) - (x3*x1*dt);
                x3 = x3 + (-b*x3*dt) + (x1*x2*dt);
                x(i,:) = [x1 x2 x3];
             end

           Typical traces of a variable, such as the first variable can be viewed by
           plotting x(:,1) over time in seconds (Fig. 5.12).



                                       Lorenz System
                20
                15
               Temperature 10
                 5
                 0
                −5
               −10
               −15
               −20
                  0     5    10   15    20   25    30   35    40   45    50
                                            Time

           Fig. 5.12 The Lorenz system. As system parameters we use s=10, r=28 and b=8/3,  the
           time delay is dt=0.01.
   111   112   113   114   115   116   117   118   119   120   121