Page 366 - Matrix Analysis & Applied Linear Algebra
P. 366

362              Chapter 5                    Norms, Inner Products, and Orthogonality

                                    Therefore, if 0 <f <n, then
                                                   F n e i2πft  = ne f  and  F n e −i2πft  = ne n−f .  (5.8.4)

                                                    iθ
                                                                           iθ
                                    Because cos θ =(e +e −iθ )/2 and sin θ =(e −e −iθ )/2i, it follows from (5.8.4)
                                    that for any scalars α and β,
                                                                   i2πft  −i2πft
                                                                 e     +e          nα
                                            F n (α cos 2πft)= αF n               =    (e f + e n−f )
                                                                        2           2
                                    and
                                                                  i2πft  −i2πft
                                                                 e    − e          nβ
                                            F n (β sin 2πft)= βF n              =     (e f − e n−f ) ,
                                                                       2i          2i
                                    so that
                                                       2
                                                        F n (α cos 2πft)= αe f + αe n−f            (5.8.5)
                                                       n
                                    and
                                                       2
                                                        F n (β sin 2πft)= −βie f + βie n−f .       (5.8.6)
                                                       n
                                    The trigonometric functions α cos 2πfτ and β sin 2πfτ have amplitudes α and
                                    β, respectively, and their frequency is f (their period is 1/f ). The discrete
                                    vectors α cos 2πft and β sin 2πft are obtained by evaluating α cos 2πfτ and
                                                                                                    T
                                    β sin 2πfτ at the discrete points in t =( 0  1/n  2/n  ··· (n − 1)/n ) . As
                                    depicted in Figure 5.8.5 for n =32 and f =4, the vectors αe f and αe n−f
                                    are interpreted as two pulses of magnitude α at frequencies f and n − f.
                                               α



                                                                                         1
                                               0




                                              -α
                                                                    Time
                                                                   αcos πt


                                               α                  n = 32      f = 4

                                               0
                                                      4     8        16        24   28  32
                                                                  Frequency
                                                                (1/16)F(αcos πt )
                                                                  Figure 5.8.5
   361   362   363   364   365   366   367   368   369   370   371