Page 187 -
P. 187

5.2 Theoretical Analysis  177
                            (a)   150                          (b)  150
                                Length (nm)  100                  Length (nm)  100




                                  50
                                   0                                 50
                                                                      0
                                         50  100  150 200 250              50  100  150 200 250


                                      (c)          150
                                                 Length (nm)  100



                                                    50

                                          Boundary   0

                                                          50 100 150 200 250
                            Fig. 5.10. Calculated electric field E x around aperture for TM plane wave. The
                            evanescent light becomes sharp as the diameter of the aperture becomes small


                            Table 5.1. Conditions for calculation of scattered light by an optically trapped gold
                            particle in evanescent field

                                  incident plane wave                  s-polarized
                                  wavelength                           488 nm
                                  space increment ∆x, ∆y               10 nm
                                  space domain to be computed          4, 000 nm × 2, 000 nm
                                  time increment ∆t                    2.0 × 10 −17  s
                                  time step n                          10,000
                                  substrate
                                    refractive index                   1.6
                                    conductivity                       1.1 × 10 −12
                                    electrical permittivity            2.56 × ε r
                                  incident angle θ                     45 ◦
                                  diameter of the trapped metal particle  100 nm
                                   ε r: free-space permittivity (8.854 × 10 −12 Fm −1 )

                            calculated by FDTD with parameters ∆x =∆y =10 nm, ∆t =2.0 ×
                            10 −17 s,n =10, 000, the refractive index of the prism 1.6, and electrical per-
                            mittivity of 2.56 ε r (ε r =8.854 × 10 −12  Fm −1 ). The computational domain is
                            4, 000 nm × 2, 000 nm (twice the output domain). See Table 5.1.
   182   183   184   185   186   187   188   189   190   191   192