Page 88 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 88

Beams and Frames                                                             73



              Then, on each element, we can represent the deflection of the beam (v) using shape func-
            tions and the corresponding nodal values as

                                                                       v i 
                                                                       
                                                                        i θ
                                                                       
                             vx() = Nu  =  [ Nx)  Nx)   Nx)     Nx)]                 (3.7)
                                                                   (
                                                   (
                                                           (
                                           (
                                                          3
                                                                  4
                                                  2
                                           1
                                                                       
                                                                       v j
                                                                        j θ 
                                                                       
            which is a cubic function. Note that,
                                           N 1 +  N 3 =  1
                                           N 2 +  N L +  N 4 =  x
                                                 3
            which implies that the rigid-body motion is represented correctly by the assumed deformed
            shape of the beam.
              To derive the beam element stiffness matrix, we consider the curvature of the beam,
            which is
                                            2
                                           dv  =  d 2  Nu  = Bu                        (3.8)
                                           dx 2  dx 2

            where the strain–displacement matrix B is given by

                                 d 2
                            B =    N = Nx ()   Nx      Nx      Nx   
                                                                 ′′ 4 ()
                                                          ′′ 3 ()
                                                  ′′ 2 ()
                                        
                                          ′′ 1
                                dx 2                                                   (3.9)
                                  6   12 x    4  6 x   6   12 x    2   6 x 
                              =−   2  +  3   −  +  2     2  −  3  −   +  2 
                                
                                  L   L      L   L L   L    L      L   L 
              Strain energy stored in the beam element is
                                                 1
                                                     T
                                             U =   ∫ σ εdV
                                                 2
                                                   V
              Applying the basic equations in the simple beam theory, we have

                                   L        T                  L
                                 1    My   1  My          1     1
                             U =      ∫ ∫   −     −    dAdx  =  ∫  M T  Mdx
                                 2       I   E   I         2     EI
                                   0 A                         0
                                   L
                                 1   dv   T   dv   1  L
                                               2
                                      2
                               =     ∫  2 2   EI   2   dx  =  ∫ (Bu ) T  EI(Bu ) dx
                                 2  dx      dx     2
                                   0                     0
                                 1     L L    
                               =   u  ∫ B T EIB dx u
                                    T

                                 2            
                                      0       
   83   84   85   86   87   88   89   90   91   92   93