Page 90 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 90

Beams and Frames                                                             75



                                                            q
                                                                x
                                           i       L       j

                                            qL/2            qL/2
                                      2
                                                                2
                                    qL /12  i              j  qL /12
            FIGURE 3.13
            Conversion of a constant distributed lateral load into nodal forces and moments.




                                                 q



                                           L           L

                                                  qL         qL/2

                                                                2
                                                              qL /12
                                            L          L

            FIGURE 3.14
            Conversion of a constant distributed lateral load on two beam elements.




            3.4.4  Stiffness Matrix for a General Beam Element
            Combining the axial stiffness (from the bar element), we further arrive at the stiffness
            matrix for a general 2-D beam element as

                                                  i θ                    j θ
                                u i     v i             u j     v j
                                EA                     EA                  
                                L       0       0     −  L     0        0  
                                                                           
                                0     12 EI    6 EI    0     − 12 EI   6 EI  
                                       L 3      L 2             L 3    L 2  
                                       6 EI    4 EI I          6 EI    2 EI  
                                0       2              0      −  2                   (3.12)
                          k  =         L        L               L       L 
                                EA                     EA                  
                               −  L     0       0      L       0        0  
                                                                           
                                0    − 12 EI  − 6 EI   0      12 EI   − 6 EI 
                                        L 3     L 2            L 3      L 2 
                                                                           
                                0      6 EI    2 2EI   0      −  6EI   4EI  
                                      L 2      L               L 2     L  
   85   86   87   88   89   90   91   92   93   94   95