Page 91 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 91

76                    Finite Element Modeling and Simulation with ANSYS Workbench





            3.5  Examples with Beam Elements
                 EXAMPLE 3.1
                                       y
                                                  P
                                           1        M   2
                                       1    E, I  2         3     x
                                            L          L


                 Given:
                 The beam shown above is clamped at the two ends and acted upon by the force P and
                 moment M in the midspan.

                 Find:
                 The deflection and rotation at the center node and the reaction forces and moments at
                 the two ends.

                 Solution
                 Element stiffness matrices are

                                                    1 θ       2 θ
                                             v 1        v 2
                                              12  6 L  − 12  6 L 
                                            
                                          EI 6 L  4 L 2  − 6 L  2 L 2 
                                      k 1 =  L   − 12  − 6 L  12  − 6 L 
                                           3
                                                   2          2 
                                                6 L  2 L  − 6 L  4 L  
                                              v 2  θ 2   v 3   θ 3
                                              12  6 L  −12   6 L 
                                            
                                          EI 6 L   4 L 2  − L6  2 L 2  
                                            
                                       2 k  =  L  −12  − L6  12  −6L
                                           3
                                                              6
                                                   2   −      2 
                                               6L  2L  6L   4L  
                  Global FE equation is

                                       1 θ        2 θ        3 θ
                                 v 1        v 2        v 3
                                                                 v
                                                                
                                 12  6 L  − 12  6 L   0     0  v 1    F Y 
                                                                       1
                                       2  −       2                 
                                 6 L  4 L  6 L  2 L   0     0    1 θ      M 1 
                                                                
                             EI −    12  − 6 L  24  0  − 12  6 L  v 2    F Y 
                                                                
                                                                  
                                                                     
                                                                       2 
                             L 3    6 L  2 L 2 2  0  8L 2  − 6L  2L 2    2 θ   =  M 2  
                                                                  
                                                                      
                                                                
                                 0    0   − 12  − 6L  12   − 6L       
                                                               
                                                  2          2     v 3    F Y  
                                                                       3
                                                                
                                                                 3 
                                  0  0    6L   2L   − 6L  4L  θ     M 3  
                  Loads and constraints (BCs) are
                               F Y2 =− P,  M 2 =  M,    v 1 =  v 3 =θ =θ =  0
                                                                     3
                                                                 1
   86   87   88   89   90   91   92   93   94   95   96