Page 228 - Modern Control Systems
P. 228

202              Chapter 3  State Variable  Models

                            when  we  select  the  third state  variable  as  JC 3  =  dB/dt.  We now  require  a  differential
                            equation  describing  the  motor  rotation.  When  L  =  0,  we  have  the  field  current
                            i  =  v 2/R  and the motor torque  T m  =  K mi.  Therefore,

                                                           r    Km



                            and  the motor  torque  provides the torque  to drive  the  belts plus the  disturbance  or
                            undesired  load  torque, so  that

                                                          Tin  =  T  +  T d.
                            The  torque  T drives the  shaft  to the  pulley, so  that

                                                         2
                                                        d e    dti_
                                                  T  =  J— I  +  b—  +  r(T l-  T 2).
                                                        dr     dt
                            Therefore,

                                                                  2
                                                               _  d 6
                                                           dx 3
                                                           dt  ~  dt ' 2
                            Hence,

                                                  dx 2   T m  TA        2kr
                                                                  •  x 3   - * i ,
                                                  dt
                            where


                                                 K m                   dy
                                                -
                                            T m  = r-«2,  and  v 2  =  -k\k 2—  =  -k xk 2x 2.
                                                 K                     dt
                            Thus, we  obtain

                                              dxT,  —K mkik 2    b     2kr
                                                           Xl
                                              ~di  =  ~~W~ "    7* 3                          (3.106)

                            Equations  (3.104)-(3.106)  are  the  three  first-order  differential  equations  required  to
                            describe  this system. The matrix differential  equation  is


                                                   0       -1       r
                                                                              0
                                                   2k                                         (3.107)
                                                            0       0         0
                                            x  =   m                   x  +
                                                                             -}_
                                                  -2kr   -K mk\k 2   -b
                                                                             J
                                                           JR
   223   224   225   226   227   228   229   230   231   232   233